ZAF correction method
ZAF correction method
In spectroscopic analysis of characteristic X-rays, the "ZAF correction method" is used for quantitative analysis of target elements. As a specimen is thicker (~several 10 nm or thicker though depending on measured elements), the intensity of the emitted characteristic X-rays is influenced by the atomic-number effect, the absorption effect and the fluorescence excitation effect. Corrections of these three effects are required. In actual correction, the relative X-ray intensities obtained from an unknown specimen against those from a standard specimen (usually a compound of a simple composition) are measured. And then, the corrections of the three effects are made to the relative intensities. In the case of EPMA, the three effects are corrected. On the other hand, in the case of TEM, only the absorption effect, which has the largest effect, is taken into account in many cases. Normally, the Cliff-Lorimer method (thin-film approximation method) for a thin specimen is applied, which often provides good quantitative results with a relatively high accuracy.
Related Term(s)
Term(s) with "ZAF correction method" in the description


Are you a medical professional or personnel engaged in medical care?
No
Please be reminded that these pages are not intended to provide the general public with information about the products.