

Analyze of stereoisomer by NMR

Product used : Nuclear Magnetic Resonance (NMR)

Certain organic compounds possess identical molecular structures but exhibit multiple stereoisomers due to differences in their stereochemistry. These stereoisomers often manifest distinct physical properties, reactivity, and physiological activities from one another. Consequently, it becomes essential to differentiate between them. While enantiomers cannot be discerned directly in solution NMR spectra, derivatization into diastereomers enables their discrimination within the NMR spectrum, facilitating the quantification of their respective ratios. This discussion delves into the analysis of cyclic peptides using ¹H and ¹³C NMR techniques. Specifically, a JNM-ECZL500G spectrometer, configured with a ²H channel extension, and a ROYALPROBETM were employed for these experiments, offering the capability of ¹³C observation alongside simultaneous ¹H and ²H decoupling.

D-substitution and diastereomerization reactions under basic conditions

Cyclo(L-Pro-L-Ala) is known to isomerize under basic conditions, leading to the formation of *DL* and *LL* forms, with deuterium incorporation at the H9 position.^[1]

Cyclo(L-Pro-L-Ala) De

Deuterated Cyclo(D-Pro-L-Ala) DL

Deuterated Cyclo(*L*-Pro-*L*-Ala) *LL*

Estimation of DL and LL ratio by ¹H NMR

Fig. 1 displays the ¹H spectra of the cyclic peptide cyclo(*L*-Pro-*L*-Ala) dissolved in D_2O solution (a) and 0.01M KOD/ D_2O (b). Fig. 1b illustrates the alteration in the ¹H spectral pattern and the absence of the H9 signal. Based on the integral ratio of H3 signals in the LL and DL stereoisomers, the *LL:DL* ratio is estimated to be 40:60.

a) D_2O solution, b) 0.01M KOD / D_2O solution

Effective observation of ¹³C signals coupled to 2H

The diastereoisomerization reaction induces significant changes in the ¹³C spectrum, as depicted in Fig. 2. Each ¹³C signal shown in Fig. 2a undergoes splitting into two signals in Fig. 2b. Additionally, Fig. 3 presents an expanded region focused on C9. It is difficult to spot any signal in Fig. 3b due to ¹³C-²H splitting. Through simultaneous ¹H and ²H decoupling, Fig. 3c reveals the presence of two signals corresponding to the *LL* and *DL* forms. This spectrum provides evidence of proper deuteration of the compound.

Sample courtesy of Prof. Takashi Ishizu

Fig. 3 : Expanded 13 C NMR spectra focused on C9 a)D₂O solution 13 C{¹H} b)0.01M KOD/D₂O solution 13 C{¹H} c)0.01M KOD/D₂O solution 13 C{¹H}{²H}

Reference : [1] J. Am. Chem. Soc., 96(12), 3985-3989, 1974.

(Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University)

Certain products in this brochure are controlled under the "Foreign Exchange and Foreign Trade Law" of Japan in compliance with international security export control. JEOL Ltd. must provide the Japanese Government with "End-user's Statement of Assurance" and "End-use Certificate" in order to obtain the export license needed for export from Japan. If the product to be exported is in this category, the end user will be asked to fill in these certificate forms.

