

Analysis of terpenes in dried wood using thermal desorption-GC-TOFMS

Product used: Mass Spectrometer (MS)

Introduction

Terpenes are organic compounds consisting of isoprene units (C5). Depending on the number of isoprene units, they are called monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), etc. Derivatives with functional groups such as carbonyl and hydroxyl are called terpenoids. Some terpenoids have a carbon number that is not a multiple of 5 due to addition or elimination during the derivatization process. There are many types of these terpenes and their uses are diverse, such as raw materials for industrial products, foods, cosmetics, and pharmaceuticals, etc. Terpenes are also known as aromatic components of plants, and are particularly abundant in coniferous trees. In this MSTips, we will introduce the analysis of terpenes in cedar and cypress wood using thermal desorption (TD)-GC-TOFMS.

Experiment

Commercially available dried cedar and cypress wood were used as samples. 30 mg of each was sealed in a TD sample tube and heated at 120°C for 60 minutes to extract volatile components. Table 1 shows the measurement conditions of TD-GC-MS.

TD conditions		GC conditions						
Thermal Desorption	TD-100xr (Markes International Ltd)	Gas Chromatograph	8890 GC (Agilent Technologies)					
Sample tube type	Empty	Column	ZB-5MSi (Phenomenex) 30m x 0.25mm, 0.25μm					
Tube desorption	120°C(60min), 20mL/min, Splitless	Oven Temperature	40°C(2min)-10°C/min -300°C(10min)					
Focusing trap type	General purpose Hydrophobic (T2)	Carrier flow	He, 2.0mL/min					
Trap cooling	0 °C	MS conditions						
Trap desorption	280°C(2min), 100mL/min, Split50:1	Spectrometer	JMS-T2000GC (JEOL Ltd.) EI/FI combination EI(70eV), FI					
		lon source						
		lonization						
		lon source temperature	250 °C (EI)					
		Mass range	<i>m/z</i> 10-800					

Table 1 Measurement conditions

Certain products in this brochure are controlled under the "Foreign Exchange and Foreign Trade Law" of Japan in compliance with international security export control. JEOL Ltd. must provide the Japanese Government with "End-user's Statement of Assurance" and "End-use Certificate" in order to obtain the export license needed for export from Japan. If the product to be exported is in this category, the end user will be asked to fill in these certificate forms.

JEOL

JEOL Ltd.

Results

Figure 1 shows TIC chromatograms of cedar and cypress wood. In cedar, similar amounts of sesquiterpenes and diterpenes were detected. In cypress,

Figure 1 TIC chromatograms

Figure 2 shows the difference analysis results of msFineAnalysis AI (focused on 12:00-17:00). ID017-19 are all sesquiterpenoids with the chemical formula $C_{15}H_{26}O$. ID017 epi-Cubenol was strongly detected in cedar, ID018 τ -Muurolol was detected with the same intensity in both, and ID019 α -Cadinol was strongly detected in cypress. These components have similar structures, so their mass spectra are also similar. msFineAnalysis AI can select them correctly using the retention index (RI) analysis.

Figure 2 Difference analysis result using msFineAnalysis AI

Table 2 shows the peak list. Two (ID021, ID025) of 32 components were not registered in the NIST library, but their structural formulas could be obtained by AI structural analysis.

Table 2 Peak list of msFineAnalysis AI

(blue : Strong in Cedar, red : Strong in Cypress, White : Same intensity)

	Gene	General e C		nent Analysi	Total Result											
ID	RT [mir	RI [iu]	Class	Log2(B/A)	Compound Name	CAS# / PubChem CID	Lib.	Similarity / Al Score	Lib. RI (iu)	∆RI [iu]	Formula	DBE	Calculated m/z	Mass Error [mDa]	Isotope Matching	El Fragment Coverage
0	01 12.	52 1357	A Only	< -4	α-Cubebene	17699-14-8	mainlib	896	1351	6	C15 H24	4.0	204.18725	0.92	0.93	100
0	02 12.	98 1385	A > B	-2.60	Copaene	3856-25-5	mainlib	913	1376	9	C15 H24	4.0	204.18725	1.01	0.96	100
					(1R,2S,6S,7S,8S)-8-Isopropyl-1-methyl-3-											
0	03 13.	1398	A Only	< -4	methylenetricyclo[4.4.0.02,7]decane-rel-	18252-44-3	mainlib	898	1432	34	C15 H24	4.0	204.18725	0.81	0.90	100
0	04 13.	58 1431	A Only	<-4	Caryophyllene	87-44-5	mainlib	944	1419	12	C15 H24	4.0	204.18725	0.85	0.81	95
0	05 13.	96 1461	A Only	<-4	(1S,4S,4aS)-1-Isopropyl-4,7-dimethyl-1,2,3,4,4a,5-hexahydronaphthalene	267665-20-3	mainlib	904	1458	3	C15 H24	4.0	204.18725	0.93	0.75	100
0	06 14.	01 1465	A > B	-3.02	Humulene	6753-98-6	mainlib	871	1454	11	C15 H24	4.0	204.18725	0.94	0.79	100
0	07 14.	26 1485	A = B	-1.11	Cadina-1(6),4-diene,t rans-	20085-11-4	mainlib	930	1474	11	C15 H24	4.0	204.18725	1.02	0.96	100
					(3R,3aR,3bR,4S,7R,7aR)-4-Isopropyl-3,7-dimethyloctahydro-1H-											
0	08 14.	52 1506	A Only	< -4	cyclopenta[1,3]cyclopropa[1,2]benzen-3-ol	38230-60-3	mainlib	781	1493	13	C15 H26 O	3.0	222.19782	1.06	0.74	100
0	09 14.	52 1514	A = B	-1.09	α-Muurolene	10208-80-7	mainlib	914	1499	15	C15 H24	4.0	204.18725	0.88	0.97	100
					Naphthalene, 1,2,3,4,4a,5,6,8a-octahydro-7-methyl-4-methylene-1-(1-											
0	10 14.	33 1532	B Only	>4	methylethyl)-, (1α,4aβ,8aα)-	39029-41-9	mainlib	874	1513	19	C15 H24	4.0	204.18725	0.38	0.98	100
0	11 14.	98 1545	A > B	-2.46	Amorphene,delta-	189165-79-5	mainlib	821	1512	33	C15 H24	4.0	204.18725	0.93	0.99	100
					Naphthalene, 1,2,4a,5,6,8a-hexahydro-4,7-dimethyl-1-(1-methylethyl)-,											
0	12 15.	08 1554	BOnly	>4	[15-(1α,4aβ,8aα)]-	24406-05-1	mainlib	912	1538	16	C15 H24	4.0	204.18725	0.46	0.93	100
0	13 15.	L4 1559	A = B	-0.72	α-Calacorene	21391-99-1	mainlib	898	1542	17	C15 H20	6.0	200.15595	0.94	0.90	100
0	14 15.	36 1577	A = B	-1.34	4-Isopropyl-6-methyl-1-methylene-1,2,3,4-tetrahydronaphthalene	50277-34-4	mainlib	937	1563	14	C15 H20	6.0	200.15595	0.91	0.85	100
0	15 15.	50 1597	A > B	-2.99	(5S,6R,7S,10R)-7-Isopropyl-2,10-dimethylspiro[4.5]dec-1-en-6-ol	72203-99-7	mainlib	852	1586	11	C15 H26 O	3.0	222.19782	0.78	0.86	100
0	16 15.	96 1629	BOnly	>4	4a(2H)-Naphthalenol, 1,3,4,5,6,8a-hexahydro-4,7-dimethyl-1-(1- methylethyl)-, (15,4S,4aS,8aR)-	73365-77-2	mainlib	861	1614	15	C15 H26 O	3.0	222.19782	0.49	0.95	100
					4a(2H)-Naphthalenol, 1,3,4,5,6,8a-hexahydro-4,7-dimethyl-1-(1-											
0	17 16.	L7 1648	A > B	-3.57	methylethyl)-, (1S,4R,4aS,8aR)-	19912-67-5	mainlib	930	1627	21	C15 H26 O	3.0	222.19782	0.76	0.99	100
0	18 16.	34 1663	A = B	0.56	.tauMuurolol	19912-62-0	mainlib	899	1642	20	C15 H26 O	3.0	222.19782	0.44	0.99	100
0	19 16.	14 1671	A < B	2.80	α-Cadinol	481-34-5	mainlib	957	1653	25	C15 H26 O	3.0	222.19782	0.50	0.94	100
0	20 16.	78 1702	A Only	<-4	(1R,7S,E)-7-Isopropyl-4,10-dimethylenecyclodec-5-enol	81968-62-9	mainlib	795	1690	12	C15 H24 O	4.0	220.18217	0.93	0.88	100
τ 0	21 17.	1/39	A Only	<-4	3,5,8a-trimethyl-6,9-dihydrobenzo[f][1]benzofuran-4-one	1/92, 16289/448	AI	832	-	-	C15 H16 O2	8.0	228.11448	0.47	0.78	95
0	22 1/.	/6 1/93	A = B	-1.15	Khusinol acetate	/8405-34-2	mainlib	/28	1825	32	C17 H26 O2	5.0	-			100
0	25 17.	36 1813	BOnly	>4	Tau-Cadinol acetate	149197-48-8	mainlib	867	1805	8	C1/H28O2	4.0	264.20838	0.40	0.88	100
	10	1005	A Only		Phenanthrene, 7-ethenyi-1,2,3,4,4a,4b,5,6,7,9,10,10a-dodecanydro-	1000 50 3	and all h	000	1000	25	C20 U22		272 24005	0.70	0.00	100
* 0	24 15.	2008	A Only	< 4	(2) asobylowy 4.4.8 trimothyl 0 triovelo[6.2.1.01 Eldedocapyl) asobato	1080-30-2		701	1900	20	C10 H30 O4	5.0	272.24505	0.70	0.88	100
T U	25 15.	2008	A Only	< -4	(/as 10as)-7-Isopropul-1 1 4a-trimethyl-1 2 3 4 4a 5 6 9 10 10a-	+15, 103030504	AI	/01			019 1150 04	5.0	522.21500	0.04	0.78	100
0	26 20	1/ 2033	A Only	6-1	decabydronbenanthrene	41577-36-0	mainlih	803	2036	3	C 20 H 32	5.0	272 2/085	1 10	0.02	100
-	20 20.	2000	Acting		Phenanthrene 1, 2, 3, 4, 42, 9, 10, 102-octabydro-1, 1, 42-trimethyl-7-/1-	41577-50-0	mannio	000	2050	5	0201152	5.0	272.24505	1.15	0.52	100
0	27 20	2076	A Only	6-1	methylethyl). (Asctrans).	19407-28-4	mainlih	022	2054	22	C 20 H 30	6.0	270 23/20	0.96	0.02	100
-	20.	2070	Acting		(4aS 4bB 10aS)-7-Isopropyl-1 1 4a-trimethyl-1 2 3 4 4a 4b 5 6 10 10a-	15407-20-4	manno	JLL	2034	22	0201150	0.0	270.23420	0.50	0.52	100
0	28 20	37 2112	A Only	< -4	decabydrophenanthrene	35241-40-8	mainlib	933	2080	32	C20 H32	5.0	272,24985	1.07	0.86	100
	20.		- Silly		(18.4a8.4b5.78.10a8)-1.4a.7-Trimethyl-7-yinyl-1.2.3.4.4a.4b.5.6.7.9.10.10a-	1111100			2200	52		5.0	2. 2.2 1505	1.07	2.00	200
0	29 21.	30 2217	A Only	<-4	dodecahydrophenanthrene-1-carbaldehyde	3855-14-9	mainlib	931	2185	32	C20 H30 O	6.0	286.22912	0.60	0.98	100
0	30 22.	00 2241	A Only	<-4	Phyllocladanol	27898-42-6	mainlib	869	2210	31	C20 H34 O	4.0	290.26042	0.79	0.89	100
					((1R,4aR,4bS,7R,10aR)-1,4a,7-Trimethyl-7-vinyl-1,2,3,4,4a,4b,5,6,7,9,10,10a-											
0	31 22.	57 2308	A Only	<-4	dodecahydrophenanthren-1-yl)methanol	24563-84-6	mainlib	857	2270	38	C20 H32 O	5.0	288.24477	0.76	1.00	100
0	32 23.	03 2364	A Only	<-4	Ferruginol, cis-	-	mainlib	862	2370	6	C20 H30 O	6.0	286.22912	1.20	0.99	100

Figure 3 shows the structural analysis results of ID025. Clovanediol diacetate which is one of the terpenoids was obtained as a higher candidate (6th /643 candidates).

Conclusion

Figure 3 AI structure analysis result of peak ID025

Terpenes in wood were analyzed using TD-GC-TOFMS and msFineAnalysis AI. Although analysis of terpenes is complex, the good results were obtained by msFineAnalysis AI using difference analysis, retention index analysis and AI structure analysis.

Certain products in this brochure are controlled under the "Foreign Exchange and Foreign Trade Law" of Japan in compliance with international security export control. JEOL Ltd. must provide the Japanese Government with "End-user's Statement of Assurance" and "End-use Certificate" in order to obtain the export license needed for export from Japan. If the product to be exported is in this category, the end user will be asked to fill in these certificate forms.

JEOL JEOL Ltd.

3-1-2 Musashino Akishima Tokyo 196-8558 Japan Sales Division Tel. +81-3-6262-3560 Fax. +81-3-6262-3577 www.jeol.com ISO 9001 · ISO 14001 Certified