

The NMR application for medicinal screening

Product used : Nuclear Magnetic Resonance (NMR)

The merit of the observation of protein – ligand*1 interaction by NMR is that one can observe interaction at equilibrium state between association and dissociation in solution. 1D NMR techniques are useful methods that can be used to reveal the target molecule among candidates of many small compounds.

In this context, they are attracting attention as screening *2 method s of pharmaceutical products.

%1 The ligand is a molecule that specifically binds to a specific receptor (protein).
%2 Screening is select those that show drug efficacy / activity from a large number of candidate compounds.

spin diffusion and saturation transfer

"Spin diffusion" and "Saturation transfer" are keywords in NMR techniques of protein-ligand interaction. When certain protein signals are saturated, saturation is diffused to all protein signals. This phenomenon is called **Spin diffusion**. Then the effect of diffusion is transferred to the ligand that binds the protein. This is called **Saturation Transfer**. The signal intensities of saturated ligand are decreased (other signals are not changed). Schematic explanation of saturation transfer is shown in Fig 1. Saturation transfer is introduced by chemical exchange between protein-bound and protein-free ligand.

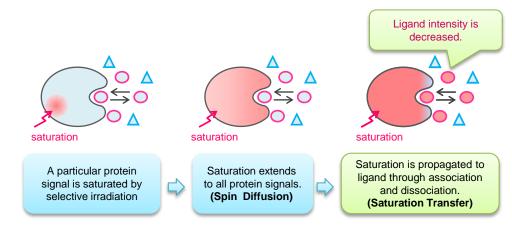
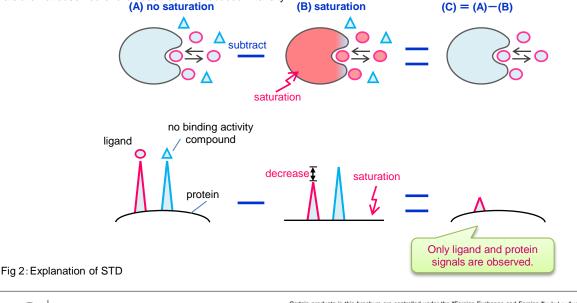


Fig 1: Explanation of saturation transfer


STD (Saturation Transfer Difference)

JEOL Ltd.

www.jeol.com

JEOL

In STD experiment, one obtains the difference spectrum between a spectrum with saturation and a spectrum without saturation. As a result, signals that show no intensity change are canceled out and only binding ligand signals remain. In other words, STD spectrum shows only ligand signals with binding activity to protein. A schematic explanation of STD is shown in Fig 2. Red-colored area indicates saturation where signals are not observed or are observed with reduced intensity.

Certain products in this brochure are controlled under the "Foreign Exchange and Foreign Trade Law" of Japan in compliance with international security export control. JEOL Ltd. must provide the Japanese Government with "End-user's Statement of Assurance" and "End-use Certificate" in order to obtain the export license needed for export from Japan. If the product to be exported is in this category, the end user will be asked to fill in these certificate forms. Copyright © 2018 JEOL Ltd.

STD experiment

STD experiment produces a difference spectrum. The difference spectrum can be obtained by alternately collecting the excited spectrum and the non-excited spectrum in the same experiment. Moreover, protein signals are reduced by T_1 pfilter to make analysis easier.(Fig 3)

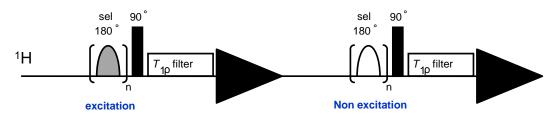


Fig 3: The pulse sequence of STD experiment

Reference: J. Klein, R.Meinecke, M.Mayer, and B.Meyer, J. Am. Chem. Soc. 1999, 121, 5336-5337.

STD spectrum

Fig 4. shows the STD spectrum (A) and ¹H spectrum (B) of mixture solution of Human Serum Albumin (HSA), L-(+)-Arginine (Arg) and L-Tryptophan (Trp).

In the STD spectrum, Tryptophan signals which have binding activity to Albumin can be observed, while Arginine signals which have no binding activity are not present.

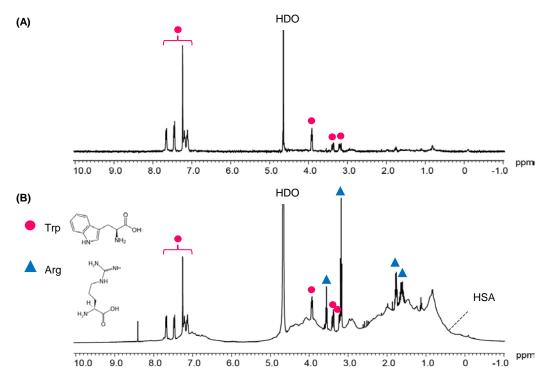
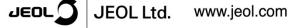



Fig 4: (A) STD spectrum, and (B) ¹H spectrum mixture solution of Albumin 0.1 mM, Trp 2mM, Arg 2 mM /D₂O

- (A) STD spectrum :64 scans, selective excitation position 0.6 ppm, non excitation position -10ppm, saturation time 8 s, $T_1\rho$ filter 50 ms
- (B) ¹H spectrum : 64 scans

console: JNM-ECZ400S+ROYALPROBE

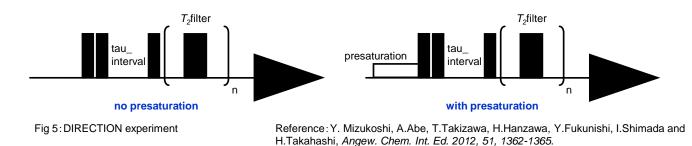
Certain products in this brochure are controlled under the "Foreign Exchange and Foreign Trade Law" of Japan in compliance with international security export control. JEOL Ltd. must provide the Japanese Government with "End-user's Statement of Assurance" and "End-use Certificate" in order to obtain the export license needed for export from Japan. If the product to be exported is in this category, the end user will be asked to fill in these certificate forms. Copyright © 2018 JEOL Ltd.

DIRECTION (Difference of Inversion RECovery rates with and without Target IrradiatiON)

DIRECTION^{%1} is a NMR technique to analyze the protein-ligand interaction by longitudinal relaxation time.

In general, signal strength in the STD spectrum increases proportionately to the strength of interaction with protein. Thus, it's possible to obtain hints about the part of ligand involved in binding.

However, when ligand's T₁ is short, efficiency of saturation transfer decreases. Therefore, STD spectrum analysis needs to take into consideration the T₁ of each ligand signal.


DIRECTION is the experiment that estimates the efficiency of saturation transfer by probing not the signal intensity but directly the T₁.

DIRECTION is essentially an inversion recovery experiment where T_1 is measured twice with saturation transfer and no saturation transfer.

 ^{1}H signals from ligands that strongly bind to protein show decreased T₁.

DIRECTION experiment

In DIRECTION experiment, T_1 is measured twice with and without presaturation (Fig.5). Analysis of the changes in ¹H's T_1 can identify binding compounds. Protein signals are decreased by T_2 filter.

Results of DIRECTION

Table 1 shows the results of DIRECTION for a mixture solution of 0.1 mM HSA, 2 mM L-(+)-Arg, and 2 mM L-Trp / D₂O. T₁ of Arginine which has no binding activity shows no significant change when it is measured with and without saturation. On the other hand, Tryptophan's T₁ is significantly decreased. Especially 3.22ppm and 3.24ppm's signals are drastically decreased.

Table 1: Results of DIRECTION

			no presaturation	with presaturation	
	assign	CS/ppm	T ₁ /s	T ₁ /s	Change %
1	arg	1.62	0.94	0.96	102.13
2	arg	1.77	0.96	0.94	97.92
3	arg	3.18	1.04	0.99	95.19
4	trp	3.22	1.11	0.62	55.86
5	trp	3.24	1.02	0.60	58.82
6	trp	3.38	1.06	0.70	66.04
7	arg	3.57	3.18	3.24	101.89
8	trp	3.93	1.83	1.28	69.95
9	trp	7.13	1.90	1.41	74.21
10	trp	7.21	1.92	1.41	73.44
11	trp	7.25	2.18	1.49	68.35
12	trp	7.48	1.92	1.22	63.54
13	trp	7.69	1.80	1.27	70.56

DIRECTION:

32 scans, loop number 80, relaxation delay 15 s, T_2 filter 80ms, tau interval 0.1s~16s 8 points

console: JNM-ECZ400S+ROYALPROBE

Certain products in this brochure are controlled under the "Foreign Exchange and Foreign Trade Law" of Japan in compliance with international security export control. JCDL Ltd. must provide the Japanese Government with "End-user's Statement of Assurance" and "End-use Certificate" in order to obtain the export license needed for export from Japan. If the product to be exported is in this category, the end user will be asked to fill in these certificate forms.

3-1-2 Musashino Akishima Tokyo 196-8558 Japan Sales Division Tel. +81-3-6262-3560 Fax. +81-3-6262-3577 www.jeol.com ISO 9001 · ISO 14001 Certified

• AUSTRALIA & NEW ZEALAND /JEOL(AUSTRALASIA) Pty Ltd. Suite 1, L2 18 Aquatic Drive - Frenchs Forest NSW 2086 Australia • BELGIUM /JEOL (EUROPE) B.V. Planet II, Gebouw B Leuvensesteenweg 542, B-1930 Zaventem Belgium • BRAZIL /JEOL Brasil Instrumentos Científicos Ltda. Av. Jabaquara, 2958 5° andar conjunto 52 ; 0404-6800 Sao Paulo, SP Brazil • CANADA /JEOL CANADA, INC, 3275 fere Rue, Local #8 St-Hubert, OC, J3Y496, Canada • CHINA /JEOL(BELING) CO., ITZ Zhongkeziyuan Building South Tower 2F, Zhongguancun Nansanjie Street No. 6, Haidian District, Beijing, P.R. China • EGYPT /JEOL SERVICE BUREAU 3rd Fl. Nile Center Bidg, Nawal Street, Dokk, (Cairo), Egypt • FRADCE /JEOL (EUROPE) SAS Espace Claude Monet, 1 Allee de Giverny 78290, Croissy-sur-Seine, France • GERMANY /JEOL (GEHMANY) GmDH Guia Aenger 30 8536 Freising, Germany • GREAT BRITAIN & IRELAND /JEOL (U.K.) ITD. JEOL House, Silver Court, Watchmead, Welwyn Garden City, Herts AL7 1T, U.K. • ITALY JEOL (ITALIA) S.p.A. Palazzo Pacinotti - Miano 3 City, Via Ludovico il Moro, 6/A 20080 Basiglio(MI) Italy • KOREA A/JEOL KORD/JEOL JEOL (U.K.) ITD. JEOL House, Silver Court, Watchmead, Welwyn Garden City, Herts AL7 1T, U.K. • ITALY JEOL (ITALIA) S.p.A. Palazzo Pacinotti - Miano 3 City, Via Ludovico il Moro, 6/A 20080 Basiglio(MI) Italy • KOREA A/JEOL KORD/JEOL JEOL (U.K.) ITD. JEOL House, Silver Court, Watchmead, Welwyn Garden City, Jerts AL7 1T, U.K. • ITALY JEOL (ITALIA) S.p.A. Palazzo Pacinotti - Miano 3 City, Via Ludovico il Moro, 6/A 20080 Basiglio(MI) Italy • KOREA A/JEOL KORD/JEOL JEOL (U.K.) ITD. JEOL HOuse, Gangdong-Gu, Seoul, OS355, Delegacion Benito Juarez, C.P. 03810 Mexico D.F., Mexico • RUSSIA /JEOL (RUS) LLC. Krasnoroletarskaya Street, 16, Bld. 2, 127473, Moscow, Russian Federation • SCANDINAVIA /SWEDEN JEOL (Nordio) AB Hammarbacken 6A, Box 716, 191 27 Sollentuna Sweden • SINGAPORE /JEOL ASIA PTELIT 2. Corporation Place Singapore 61849 • ATMWAN /JIE DONG CO., LTD. 2, Chung Hsiao East Road, Section 1, Taipei, Taiwan 10023 (R.O.C.) • THE NETHERLANDS /JEOL (EUR

Copyright © 2018 JEOL Ltd.